fluid pressure, then the total pressure he gas species, i. e.:

$$-P_{CO} + P_{H_{1}} + P_{O_{1}}$$

$$\frac{H_{1}}{H_{1}} + \frac{fH_{1}}{\gamma_{H_{1}}} + \frac{fO_{1}}{\gamma_{O_{2}}}$$
(7)

ent for species i at 700°K and a total gacity coefficients of all species except by coefficients of H₂O are interpolated vay and Davis (1969). By making the vo equations can be obtained from

$$10^{-3} (P-1) - \log f_{0_1},$$

$$+ \frac{C \cdot P}{A} = 0$$
(8)

$$, \quad C = K_3 f_{O_1} + K_4 f_{O_2}^{-\frac{1}{2}} + f_{O_3}. \tag{9}$$

to be solved graphically for the two

ite-graphite in adjacent pelitic rocks ne range 10⁻³⁵ to 10⁻²⁶. In the absence elitic-carbonate assemblage we have able and Fig. 1).

artial pressures) obtained with this is of f_0 , chosen. This is illustrated in id pressure) is plotted against f_0 . As sen value of 10^{-26} results in a variation lately 1,000 bars. If, for example, the of 10^{-26} the calculated fluid pressure of 6,000 bars. A value of more than ressure of 3—6 kb consistent with the ler grade rocks.

pressure of gas species in equilibrium with mblage at 700°K and $f_{\rm O_1} = 10^{-26}$

irs

The Calcite-Quarz-Plagioclase-Paragonite-Graphite Assemblage

Fig. 1. Plot of calculated total pressure (=fluid pressure) versus oxygen fugacity at 700°K. Dots represent graphical solutions of Eqs. (8) and (9); see text. The minimum is not precisely determined

From the above calculations, the estimated H:O ratio in the fluid phase is 0.6:1. Thus the presence of graphite need not indicate a high H:O ratio in the fluid (Miyashiro, 1964), if CO_2 pressure is high. Conversely, a low H:O ratio in a fluid which has equilibrated with graphite need not indicate a high f_{O_2} .

Even if the above calculations are only approximate, the usefulness of calcite-quartz-plagioclase-paragonite-graphite assemblages in the estimation of fluid pressures is readily apparent. This assemblage and the analogous K-rich assemblage, muscovite-calcite-quartz-anorthite-orthoclase (Hewitt and Orville, 1966), merit further experimental investigation.

Acknowledgements. Ghent and Nicholls acknowledge financial support from NRC operating grants A-4379 and A-7372, respectively.

The writers acknowledge the constructive criticism of Drs. H. J. Greenwood, B. W. Evans and F. J. Turner. Any errors in fact or interpretation are ours.

References

Burnham, C. W., Holloway, J. R., Davis, N. F.: Thermodynamic properties of water at 1,000°C and 10,000 bars. Geol. Soc. Am., Spec. Papers 132, 1—96 (1969).

Chatterjee, N. D.: Synthese und obere Stabilität des Paragonits. DMG Tagg., Köln, Ref., 13 (1968).

Evans, B. W.: Application of a reaction rate method to the breakdown equilibria of muscovite plus quartz. Am. J. Sci. 262, 647—667 (1965).

French, B. M.: Some geologic implications of equilibrium between graphite and a C-H-O gas at high temperatures and pressures. Rev. Geophys. 4, 223—253 (1966).

Goldsmith, J. R., Newton, R. C.: P-T-X relations in the system CaCO₃-MgCO₃ at high temperatures and pressures. Am. J. Sci. (Schairer vol.) 267-A. 160—190 (1969).